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Markovian model of growth and histologic progression in prostate cancer
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Models, based on bio-physical and biological considerations, may be very helpful as support tools for
traditional diagnostic methodologies and interpretation of statistical data in oncology. This is particularly true
when the neoplastic progression and differentiation are rather simple and regular, such as in the case of
prostatic adenocarcinomas. Using clinical data as a “statistical ensemble,” we propose here a Markovian model
to forecast the tumor progression. After validation with clinical data, the model is applied to the determination
of the temporal evolution of the risk of metastasis.
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[. INTRODUCTION to evaluatg and the lack of in vivo'/clinical data represent-
) ) ) ing a temporal evolution of the neoplasm.

Prostatic adenocarcinoma, like many other cancers, is "The case of prostatic adenocarcinoma allows one to partly
characterized in its temporal evolution by volume growth,yqig such difficulties. In fact, as mentioned before, volume
and loss of differentiatiof1]. Volume and histologic differ-  5nq grade are the natural choice for the construction of math-
entiation(both of a single cell and of the whole tumaran  gmatical models, in which few parameters are required,
be quantified in terms of grading systefa3. Therefore, the  {hanks to the simplicity and regularity of prostate cancers
pair volume-grade constitutes the most widely used and sigs ogression. Also, since prostate adenocarcinomas are very
nificant prognostic variable, also because they allow one tQjitf;sed and often detected only after the patient's death, a
predict the presence of metastasis better than any other mQkyge amount of data about untreated tumors is available.
phologic or clinical featureg3]. . Even though they do not strictly constitute a temporal se-

Indeed, given the tumor volume and grade, the predictionyence, they may be used as a statistical “ensemble,” which

of its evolution and risk of metastasis is a crumal questlon,may provide a somewhat equivalent information as a time
particularly for the case of prostate cancers, which are verygg ies

frequent in elderly memore than 30% among men over 50,

with a sharp increase with a§d—6)), but very slow in their - temporal evolution with the statistical ensemble is to treat
progression. As a result, there are many more men dying fQrowth and histologic progression of the tumor as a “Mar-
other reasons, but with a prostate cancer which is often still5yian process,” in which the many elements, which influ-
clinically insignificant, than men that die of prostate cancefgnce the dynamics, are accounted for through a stochastic
[5,6]. Therefore, there is a wide debate about the usefulnes,épproach[zo 21, as discussed in Sec. II. In Sec. Ill, we
of aggressive treatmentssurgery, radiation therapy, hor- estimate the values of the parameters of our model by com-
monal therapy, which often cause incontinence and impo- arison with autopsy dafd.,4]: death can be considered as a
tence, for tumors that, in most cases, would not threaten thﬁarticular random sampling of the growth process, and the
life and health of the patient in his remaining lifetir®-€.  propapilistic distribution in terms of volume and grade from
Even though different studies suggest the strategy of ‘watchyropsies can be compared with that generated by a series of
ful waiting,” giving the patient the appropriate treatment simyjations. In Sec. IV we consider the risk of metastasis, by
only if and when the tumor is really dangerols-10,, the jntroducing the probability of metastasis per year. The prob-
decision of optimal scheduling of the screening procedur%bi“ty that a tumor of given mass and grade has already
after detection is still an open questifsy. _ produced metastasis is calculated and compared with experi-
To help in this kind of decisions mathematical models, ental data from radical prostatectomies and successive
based on bio-physical, chemical and biological conS|der1=0||ov\,_ups [3]. Finally, in Sec. V, we apply our model to the
ations, may be valuable tools to support and complemendreiction of the temporal evolution and risk of metastasis

traditional diagnostic approaches. Indeed, in the last decadeg); 5 tumor of given initial volume and gradboth affected
several models have been proposed to describe the dynami5§ uncertainty.

of tumors[11-14 and angiogenes{47-19. Despite the sig-

nificant conclusions and the validation through comparison
with experimental data, two major drawbacks affect most of
these models: the large number of parameteften difficult A. Biological considerations

The most suitable mathematical approach to couple the

Il. THE MODEL

For prostatic adenocarcinomas, the more widely used

grading system in clinical applications is that of Gleason

*Electronic address: riccardo.peirolo@libero.it [2,6,22,23. In such a scheme, cancer cells are divided into
"Electronic address: marco.scalerandi@infm.polito.it five categories, starting from the better differentiat€dea-
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son grade 1to the worst differentiatedGleason grade )5 As mentioned before, WMD cells proliferate following a
However, in the literature, cells are sometimes grouped irGompertzian-like dynamicéee alsd27] where a universal
only three categories: well differentiaté@leason grades 1 Gompertzian-like dynamics is postulated for all tumors in
and 2, moderately differentiatedGleason grade )3and early stages Hencevy grows according to
poorly differentiated(Gleason grades 4 and $,6,8. The (t+7) ®
i ifi i ili . v T)—U

\évrk;(()jlg tumor is then classified on the basis of the prevailing o= o0t Yol Tyl - exfd=VJdV)ogt), (2)

In our model we consider only two kinds of cells: well-
moderately differentiatedWMD) cells, corresponding to
Gleason grades 1-3, and poorly differentiat®D) cells,

wherel'y(>0) is the growth rate an¥, is a critical volume
at which the slowing of the growth starts becoming evident,
due to limitation in nutrient availability11] and/or cells de-

Gleason grades 4 e_md . Th? gradg of the tumor is the. rmation[28]. The volume of PD cells grows exponentially
measured by a continuous variable, given by the percentagg. ., growth constant’;:

of the whole mass that is poorly differentiated. Beside the

obvious simplification from a mathematical and computa- . vt+ 1) —oq(t)

tional point of view, our assumption is justified for several U1= . =To1(). 3)
reasons. First of all, the available experimental data of

volume-grade distributiongl] are too sparse for a compari- Finally, the de-differentiation process is described as fol-

son with more than two grade classes. Indeed up to now onlipws. At each time step, the volumg is divided inN iden-
models with a single kind of cell have been adopted. McNeatical volume units(labeled as), each of 0.1 crf) with the
[24] and Schmidet al. [25] consider an exponential growth rest discarded. Each volume unit can transformvfowith
for the whole tumor, while Fuck®t al. [26] consider a probability p;. Hence,

Gompertzian one. However, considering a single type of cell N

seems to be insufficient to grasp the complexity of the Vo — vo— D valis

growth mechanisms, as shown by Stanetyal. [3]. In par- i

ticular, they demonstrate that the percentage of poorly differ- @)
entiated cells in tumors from radical prostatectomies is more N

predictive of the risk of metastasis than the traditional Glea- vy — v+ 2 gl

son score. i=1

Furthermore, we distinguish between a Gompertzian and .
g P wherer; are random numbers which assume the valugs 1

an exponential growth laws for WMD and PD cells, respec-0 ith orobabil 1o
tively. Such choice is dictated by experimental evidence ) with probability p (or. _pE)' .
about the growth rates. Schméd al. [25] suggest an expo- The averagec(determ|_n|st!o treatment of_th.e S.t(.)ChaSt'C
nential growth with median doubling time of about 70 growth processes, resulting in Eq$) and(2), is justified by
1the huge number of cells constituting the tumor maéshe

months for organ confined tumors without any evidence o
Gompertzian slowing and a decrease to 43 months for tuQrder of 10 per cn). On the contrary, the slowness of pros-

mors in advanced stagésot organ confined Nevertheless, tate cancer progression _sugges_ts_that onl_y a small subset of
they consider only clinically detectable tumors, of at least™Utations produce de-differentiation, while most of them
0.2'cr?. The same growth rate cannot apply to microscopiogenerate .clc_mes not competitive with or with similar growth
tumors. In fact about 30 doublings are needed to reach asizct%jlarad?”s“cs of nonmutated celi®lote that the WMD .
of 1 cm? from a single cell: with a 70 months doubling time, P"aS€ includes a very heterogeneous set of cells, which

this would be equivalent to about 140 years! Therefore wdnight have very different properties_ but f(.)HOW the same
believe that microscopic tumors formed by well- growth law) As a consequence, even if the time and volume

differentiated cells grow much faster in the initial stages.SC@€S used her@bout 1 year and 0.01 cinsuggest that

Eventually, later the growth process slows down becausgwutations occur with a high frequency, the de-differentiation
WMD cells are incapable of angiogenesis and only the apPfOCESS remains a rare phenomenon. As a consequence, the

pearance of PD cells, probably more resistant to apoptosi?,Xp“C't introduction of a random term is not avoidable.

determines an increase of the growth constant in more ad-

vanced tumors. C. Implementation

The model proposed in the previous subsection is imple-

B. Mathematical description mented as follows:
To implement our model, we discretize time with astep (1) A population ofM different “virtual” patients is con-
At each time step, the tumor is described by two variables$idered. At any timet during the evolution, each casi
the volumev, of WMD cells andv; of PD cells. We call =1,... M) is defined by a vector formed by volume, grade

V=vy+v, the total volume. As i3], we define the grade of and agea of the patient:
differentiationG of the tumor: N
wi = {Vi(1),Gi(D), (1)} (5

G=vy/V. (1) Of coursea;(t)=a;(0) +t, wherea;(0) is the initial age of the
If G<0.5, the tumor is considered WMD, otherwise PD. patient.
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(2) The initial distribution of patientsv, , is determined
from autopsy data. 60
(3) Each case is allowed to evolve up to an ageT,,

i.e., for a number of time stepg=[T.—a,(0)]/ 7.

(4) The full set of vectors is then sampled into intervals
of width AV,AG, Aa to obtain the probability density func-
tion to detect a tumor with volume betwe&hand V+AV,
grade betweefs andG+AG in a patient with age between
anda+Aa. Since, for validation, we consider autopsy data, 0
each vector is weighted by a functidr{a(t)), which ac-
counts for the rate of death at aggt). Age [years]

In the present implementation, the growth parameters
(T'o,Ve,T'1,py) are assumed to be the same for each ensemble FIG. 1. Frequency of prostate adenocarcinomas in adult males
member (virtual patienj. A better description should of derived from autopsy dafa]. For each decade, we report the per-
course take into account that the mutation probability Whichc_e!“ of cases with a tumor. The solid line represents an exponential
causes de-differentiation depends on genetic predispositidftnd-
and on the local environment, different from individual to

N
o
1

% cancer
N
o

30 40 50 60 70 80 90

individual. Hence, it might be reasonable to use a distribu- dc(a)

tion of transformation rate§.e., P=Py) and characterize the Hl(a)

transition probability by the resulting average value and vari- f(a) = W- (6)
ance. Nevertheless, as we will show later, the details of the > —l(a)

distribution do not substantially influence the ensemble av- 4 da

erages, remaining crucial only for what concerns the particu-
lar evolution of each individual member of the ensemble. [Note that the rate of death at the age a fi)=
—-[dN(a)/da]=-[dl(a)/da]N(a=0). In fact, N(a)=I(a)-N(a
=0) is the number of living members at agg
11l. COMPARISON WITH EXPERIMENTAL DATA The initial distribution of ageSi,(O) has been selected
from 25 to 99 years, reproducing the distribution described

To apply the proposed approach, we discretize time with by f(a). .
one year step, small enough to appreciate some details of the ONce the system is let to evolve, the sef\s#; T; vec-
dynamics, which develops over 40-50 years, but long enougfP’s Yields the distributioavolume, grade and agef detect-
to allow us to neglect features over a short time sctike able tumors. Integrating over age, we obtain data comparable

cellular events Also, we consideM=10 000 andT,=100  With the experimental frequenci€S(V, G)e,y) obtained from

years. The latter is large enough so thga(t) > T,) ~ 0. 100 autopsie$l] which are reported in Taple Il. Experimen-
We start our simulations with tumors composed of wMD t@l data have been rearranged to consider only two grade

cells [G;(0)=0] and volumeV;(0)=10"3 cn¥(0Ji). V;(0) is classes, W_MD and PD, as _explamed in Sec. Il

the lowest detectable size of a tumor in autopsy or from a 10 obtain the frequencies for the simulated data, we

surgical specimer|5,29. Considering smaller tumors, al- sample the yolume into thg same five classes asin the statis-

though desirable, is not meaningful due to the lack of datdic@l analysis of the experimental data. The optimal model

for estimating the distribution of tumor occurrence with age.Parameters have been selected in order to minimize the
In order to reproduce as well as possible the experimental

distribution for the tumor occurrence age, we consider the TABLEI. Survival probability, new cancers fraction, and cancer

distribution of prostate tumors and life tables for the yearoccurrence distribution as a function of atf@) is taken from[30],

2000 in the United Statei80]. In Fig. 1, we report the fre- dc(a)/dais derived from the exponential fit of Fig. 1 af@) from

quency of prostate cancer in every decade of life over 4G9 (6)-

derived from a metanalisis of eight series of autop$is

An exponential fit of the formc(a)=K expla/a) with K  Age Survival New cancers f(a)
=2.37 andw=28.5 years, gives the percent of prostate cancef®) probability (%) I(a)  (%lyeay do(a)/da  (107?)
affected people at agae Although the adopted exponential 977 0.20 0.63
fit constitutes a somewhat arbitrary extrapolation of cancer ' ’ '
occurrence at both young and old ages, we believe that ne> 96.3 0.28 0.88
glecting in the simulations cancer occurrenceaat40 will 45 93.8 0.40 1.22
cause an error larger than the one introduced by a possibBb 88.7 0.57 1.63
poor extrapolation of the(a) curve. 65 77.9 0.81 2.03
The time derivative defines the fraction of men of age 75 57.3 1.15 2.13
that get a new cancer. Ifa) is the survival probability at age g5 27.3 1.64 1.44
a (taken from[30]), the probability that a prostate tumor gg 43 232 0.32

starts at age is (see Table)l
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TABLE II. Frequencies of detection of a tumor with given grade  TABLE IV. Frequencies of detection of a tumor with given
and volume. Comparison between simulation and experimental regrade and volume. Simulation results obtained with a cut-off of
sults. In parentheses, we report the results obtained by using a peancer occurrence at age 35. In parentheses, we report for reference
tient dependent transition probability with random uniform distri- the simulation results already reported in Table II.
bution aroundp.

V (cnP) WMD PD
WMD PD
V<0.05 19.8(19.3 0.0(0.0)
v (cmd) exp sim exp sim 0.05<V<0.17 18.9(18.6) 0.6 (0.5
0.17<V<0.46 24.1(23.6) 2.3(2.2
V<0.05 19 19.319.2 1 0.0(0.0 0.46<V<1.40 14.8(14.4) 7.2(7.3
0.05<Vv<0.17 18 18.618.6 2 0.5(0.5 V>1.40 0.1(0.2) 12.2(13.9
0.17<V<0.46 18 23.623.9 2 2.2(2.9
0.46<V<1.40 13 14.415.3 7 7.3(7.4
V>1.40 7 0.2(0.2) 13 13.9(13.5 choice adopted, we have simulated the ensemble behavior

assuming that no cancer starts at ages belowi.85 we
impose a cut-off by neglecting in the sampling process the
square distance between the simulated and experimental freentributions from patients witka(0) < 35]. We obtain re-
quency distributions, considering a Poissonian error for eacbults (see Table 1Y in good agreement with the ones re-
value of the simulated frequency greater than 5 and an errgjorted in Table I, hence justifying our extrapolation. The
equal to45 otherwise. We found a minimum for the values lower percentages of large volume tumors found when the
of the parameters shown in Table Ill. Note tHa{=0.16  cut-off is applied are reasonable, considering the shooter
corresponds to a doubling time of about 56 months, in goodveragg duration of the simulated neoplasm evolution.
agreement with the average of the experimental observations To demonstrate the need of a two-populations model, we
for organ-confined and non-organ-confined tum@3 and have also tried to reproduce the experimental data with a
69 months, respectively25. single population model. In Table V, we report a comparison
In Table Il we report also the comparison between experibetween the marginal frequencigég(V) of the experiment
mental data and the simulation results. We can observe thahd of the two-species simulation previously descritget
the general agreement is satisfactory, confirming that theim). Marginal frequencies are defined in terms of volume,
simple model adopted is sufficient to reproduce enough ini.e., summing the results of Table Il for each volume over the
formation about the dynamics of the system. Some discrepyrade: f,,(V)=fyup(V)+fpp(V). We compare the results
ancies may be found for big WMD tumorgwith  ith that obtained when optimization has been performed
V>1.4 cn?) and small PD tumoréwith V<1.7 cn?). How-  considering a single cell species: either PD ceéssim),
ever, it should be noted the poor statistifesv experimental  following an exponential growthI';=1.3, best choice in
cases for such conditions, which indeed correspond to theterms of square distangeor WMD cells (g-sim), with
extreme behaviors of “less harmful tumors that grow in sizeGompertzian growth{V,=0.5, I';=5.9, best choice in terms
without histologic progression” and “very aggressive tumorsof square distanoe The results show that ge-sim fits much
that turn very soon to poorly differentiated patterns.” Thepetter real data than both e-sim and g-gPoissonian error
results reported in parentheses refer to simulations in whicB 9 against 31.5 and 10.and we can conclude that a single

the de-differentiation probability is assumed to be patienispecies model is not adequate to describe prostate cancer
(marked with the index) dependent to simulate different growth.

environmental conditions for different ensemble members
[pti:pt(0.8+0.2<) wherex is a random number with uniform
distribution between 0 and]1As expected, they are very

close to the ones obtained with a fixed rate equal for all As a further Step, we address the problem of metastasis

individuals (results not in brackefs generation. We assume that the probability of metastasis per
As already mentioned previously, the extension of the ex-

ponential extrapolation of the frequency of prostate cancers
to ages below 40 is somewhat arbitrgsge Fig. 1 and rela-

tive discussiol but unavoidable, due to the lack of clinical
data. To prove that our results are not too sensitive to the

IV. PREDICTION OF METASTASIS

TABLE V. Marginal frequencies of detection of cancer with a
given volume. Comparison between experimental data and simula-
tions with two(ge-sim) and one(e-sim, g-sim species.

) _ _ ) cm? % exp % ge-sim % e-sim % g-sim
TABLE lIl. Optimal parameters for the simulation as obtained
by minimizing the square distance between simulated and experi- V<0.05 20 19.3 35.8 18.9
mental distributions as reported in Table II. 0.05<V<0.17 20 19.1 16.1 12.9
0.17<V<0.46 20 25.8 7.6 16.2
To Ve I i P 0.46<V<1.40 20 21.7 14.4 333
1.3 0.018 0.16 0.018 0.022 V>1.40 20 14.1 26 18.8
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TABLE VI. Probability that a tumor of a given volume has 05
produced metastasis. a3
o * *¥ 4
e % met exp % met sim E qal o *Eé*** Fat
o 03 * * oo=tno
= * §5EQQ+++$¢é]DDDDDDD
0.5<V<2 14% 6% > 02l @QQEQ QAT g g g4
2<V<6 39% 37% g§$$$+
6<V<i2 67% 1% B T
V>12 97% 93% Time [years]
8 -
. . . . . . 6 il
time steppmet IS @ monotonically increasing function of the = 40
volume of PD cells. This choice is in agreement with data 5 4l Qﬁ%ﬂu*
reported by Stamet al. [3], where a strong relation be- ; ﬂ“i*
tween the percentage of PD cells and the presence of me- 27 Q@Qé**
tastasis is shown. agdi?

The functionp,,c{v1) is obtained from the total probabil- '
ity law. In fact, the probability that a tumor generates the first e [
metastasis while growing from volumsg to v, +dv, is given

by
Pmefv1+ dv1) = PmefV1) + Pmefdv1) — PmedV1) Pmefdvy) .
(7)

Considering thatdv, is a small volume, we introduce the
linear approximatiorp,e{dv,) =p,dv, to obtain

3 4 5 B 7

Pref(v1) = 1~ €XH= pro). ®) Volume (]
Using Eq.(8), the probability of metastasis is calculated  FIG. 2. Temporal evolution of the volumes of WMD and PD
as follows: cells for four different realizations obtained from the same initial
(1) At each time step of a simulation a random number condition and representation of the corresponding trajectories in the
r e[0:1] is generated. volume-grade Cartesian plane.
(2) If 1 <pmefva(t)), from that time on there are meta- pregiction in terms of volume, differentiation and metastasis
stasis. generation. Given such values and the vector of the initial

(3) Summing over many simulations we get the probabil-yalues(grading, volume and patient agehe evolution of a
ity that a tumor of total volumeV has already produced single tumor can be followed up and its temporal evolution
metastasis. represented both as a traditional time sequence and as a tra-

The ideal data for a comparison come in this case fronjectory in the(V-G) Cartesian plane, i.e., neglecting from
radical prostatectomies and successive follow-ups. In fact imow on the age variable. Furthermore, at each point of the
many cases microscopic, undetectable and clinically insigtrajectory, the probability of metastasis can be estimated us-
nificant metastasis may be present and only in the followingng Eq. (8).
years their presence becomes evident. In Fig. 2, we represent the temporal evolution of four

Experimental frequencies are given in Table VI for four Selected casedrom now on called realizatiopseach start-
volume intervals[3]. (Note that volumes are much larger ing from the same initial condition/=0.1 cn¥ andG=0. As
here than in previous cases, since we consider experimentdsible from the upper and middle plot; which the vol-
data for tumor patients, i.e., in more advanced staghle. Umes of WMD and PD cells are representednly slight
derived the value op,, (reported in Table I)f that minimize ~ differences are present. In fact, after an initial phase of pro-
the square distance between the simulation and experimen%{ﬁrat'on of WMD cells, later de-differentiation becomes
data(see Table V). Our results are in good agreement with ominant and, at long times, well differentiated neoplastic

observations, except for the underestimation in the cas(ée"s reach an asymptotic volume. It is to be noted that, e.g.,

S t 20 years, the total tumor volum@s) for the four cases are
V<2 cn?, probably due to neglecting, in our model metasta-2 ' . . e
sis due to WMD cells, which are predominant in small tu—0'6’ 0.8, 1.18 and 1.20 cinwhich might be a significant

; : o difference from a clinical point of view. Also, the cases differ
mors. Experiment confirms that even WMD celgbeit with : ! ’
very low probability may produce metastasis. for the time of metastasis occurrente:15, 12, 18 and 22

years, respectively.
V. APPLICATIONS In the lower plot, the same data are represented in a
volume-grade Cartesian plot. Here, differences among the
A. Results realizations are hardly visible.
The values in Table Ill represent the best choice for the Data as the ones reported in Fig. 2 are significant only for
parameters of our model, i.e. those that optimize the growtlhinderstanding qualitatively the behavior of the system. A
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FIG. 3. Forecast of the evolution of a tumor with initial conditiMe 0.1 cn? andG=0. Representation of the distribution of volume and
grade at 5, 10, 15, 20 and 25 years after initiatifom M =1000 realizationsand temporal evolution of the metastasis probability.

different form of analysis, however, allows us to use theume and differentiation can be guessed only through indirect
model as a diagnostic tool. In fact, for a given starting pointand imprecise measurements: blood test of prostate-specific
[V(0),G(0)], a series ofM simulations can be performed, antigen(FfSA), transrectal uItrasoundI’RUS), digital rectal
each producing a different path in the-G plane. At a fixed ~examination(DRE), needle biopsy, etd4.,6]. So, even the
time t, the M points (V,(t),G,(t)), wherei(=1, ... M) is the  Starting conditions are represented not by a single value but
trajectory label, form a “cloud” of values, representing aPy @ probabilistic cloud of valuegv;(0),G;(0)), as done in
probabilistic forecast o¥/ and G. Also, each temporal evo- Meteorology with the ensemble prediction syst¢EPS
lution may have metastasis from a certain time on. So, sum5133, and the temporal evolution causes a further widen-

ming over all the simulations, we can get the probability of'ngv\?f the CIOUd'h th irtual . ts starting f
metastasis years after the initial diagnosis of the tumor. he fce)lIg\rlgiff)losiiitiaelr?:ongiat?oxg' ual experiments starting from
In Fig. 3, as a typical example, we report snapshots of thé 1 T1: 9 t linicall ' detectabl fill Il and
distribution in theV-G plane at 5, 10, 15, 20 and 25 years, Wl\(/llg V;0a5 unrgogs_c(;né%a} y detectable, stil small an

for M=1000 simulations. The initial conditions are the same " > "T2- an iﬁte'rme_diéte Mol =15 . G=0.5-
as the ones used in Fig. 2. As expected, the tumor evolves 3) T3 a big tumor already PD at the diaig’nosks:
very slowly. The cloud remains initially quite well localized, —4 g cn?, G=0.75.

years, while the volume remains quite predictable, this is N@njtial values with standard deviation of 0.1 @and of 0.1
longer true for the tumor grade. Then, the dispersion for then the logarithm ofv. In Fig. 4, we plot the distribution at
volume becomes biggefranging between 0.6 and almost t=0, 5, 10 and 15 years in\4-G plane for the three cases.
2 cn? att=20 year$. Finally, as soon as the volume turns to Except in the case of early diagnosed tum@sall WMD
be big, generally tumors appear to be poorly differentiatedumors, the probabilistic cloud becomes less spread with
(good predictions for the tumor grade, but low confidence orincreasing time, particularly for what concerns grade, with
the tumor volumg It should, however, be noted that the spreading along th&-axes following a trend comparable to
predictability remains good during all stages of the evolu-the ones obtained assuming no error in the initial diagnosis
tion. (see for comparison Fig.)30n the contrary, the error in the
As already remarked, such analysis also allows us towolume determination seems to affect strongly the predic-
evaluate the temporal evolution of the probability of metastations. In fact, the indetermination on the logarithm\6fe-
sis, as reported in the lower-right plot of Fig. 3. As expectedmains almost constant when increasing time, with a notice-
Pmet iNCreases exponentially with time, together with the ex-able indetermination of the tumor volume.
ponential increase of the volume of PD celkee also Fig. Sensibly different is the case of an early detected tumor
2). (first column. Here, the uncertainty on the initial conditions
A more careful analysis, however, requires one to conimake the time evolution rather unpredictable. In particular
sider that initial conditions are always known with a degreeno estimate can be provided about the grade at 5 and 10
of uncertainty. In fact, except with radical prostatectomyyears, with obvious consequences on the reliability of the
(which of course stops the temporal evolujiotumor vol-  estimate of the metastasis probability.
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Small, WMD tumour Medium size and grade Big, PD tumour
tumour
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FIG. 4. Effects of the uncer-
tainty on the initial conditions on
the forecast of the evolution for
three different initial conditions as
reported in the text. Representa-
tion of the distribution of volume
and grade at 5, 10 and 15 years
after initiation.

10° 10° 10° 10° 10° 10°
v (em3) v (em?) v (cm?)

In fact, the same set of data allows us to estimate th@rostate cancer was much smaller, he concluded that there
probability of metastasis at 5, 10 and 15 years for the threenust be a large group of latent cancers biologically incapable
cases considered. Results are reported in Table VII. As wef progression and only a small group of aggressive, harmful
can seepnetis negligible for a T1 tumor at 5 years and still prostate cancers. He also proposed that, since it is not pos-
small at 10 years. Even for a T2 tumpy,;is low at 5 years sible to distinguish between them, prostate cancer evolution
and moderate at 10 years, so for the oldest patients surgery @rhighly unpredictable. This theory has now been abandoned
radiation therapy may not be advisable. Our results are imand there is a wide consensus about a single kind of prostate
satisfactory agreement with clinical dat@ported in paren- cancer, whose frequency of inception increases with age and
theses in Table V)| taken from[8,33], even though the cor- whose growth is very slow in comparison with other tumors
relation between the model initial condition and the experi-[5,25]. As a result, Stame}35] suggests that prostate cancer
mental diagnosis of the selected cases is rather rough due i®highly predictable. His statement, however, fails to justify
the limited information about the experimental data. Also, aghe sometimes unexpected outcome of tumor evolution.
already mentioned, our model underestimates slightly the Figures 2 and 3 seem to support Stamey’s thesis. In fact
metastasis probability for small WMD tumors, since it doesthe tumor dynamics seems to be only slightly stochdSiig.
not account for metastatization of WMD cells. 2) and the expected size and grade of the tumor at any given
time quite predictabl¢Fig. 3). Nevertheless, Fig. 4 suggests
that the uncertainty in the initial conditions might render
predictions less reliable, especially in the case of early diag-

In 1951 Franks34] discovered that many elderly men, nosed tumors. In fact, prognosis is often synthesized by a
who had died from different illnesses, had in their prostate &jngle parameter: the risk of metastasis as a function of time,
small adenocarcinoma. Since the number of men dying ofyhich can be compared with patient's life expectancy and

other clinical data and help in the decision of the appropriate

TABLE VII. Metastasis probability at 5, 10 and 15 years for the treatment. Such parameter is indeed very dependent on the
three cases considered in Fig. 4. Data in parentheses refer to clinicaimor grade, hence on the quality of the initial conditions.
data with roughly similar initial conditions.

B. Discussion

5 years 10 years 15 years VI. CONCLUSIONS
T1 3%(7%) 8%(19%) 19% In this work, we have proposed a Markovian model to
T2 139%(16%) 359%(42%) 65% predict volumetric growth and histologic progression in pros-
T3 45%(49%) 83%(74%) 98% tate cancers. The model predictions have been validated with

a statistical analysis of the relation between initial diagnosis

011902-7



R. PEIROLO AND M. SCALERANDI PHYSICAL REVIEW E70, 011902(2004)

and final outcome over a group of patients. This approach We plan to integrate our model with other sets of data
makes it possible to exploit different sets of data, optimizingsuch as temporal series of PSA values in untreated patients
the parameters in comparison with them. Here we used aund information about genetic predisposition. A further step
topsy data, considered as a random sampling of the tumagould be to consider not just the total volume but also the
development process, and clinical data about metastasis frogtowth pattern and directionalitiwhere it starts, whether it
radical prqstatectomies and f0||OW—yp.Temp0ra| evolution Ofpenetrates through the Capsu'e, if it reaches the seminal
the tumor is repre_s&_anted by a pat_h in the volume-_gfade_ P'an%sicles, etg. Different tissues have different rigidity and
the two most significant diagnostic and prognostic Va”ablesvascularization, leading to different prognosis of further
Owing to uncertainties both in the initial conditions and in 4.5\wth and metastasit8,2]. This can well be reproduced
th.e fu'rther evolution, the path is enlarged to a cloud movin ith a local interaction S’imulation approachlSA) [36], in
with time toward the upper right comer of the plane. %/hich also space is discretized and local mechanisms may be
i

The general agreement of our model with autopsy an rectly included in the mod€l11,13. For this kind of de-

clinical data is good, although there are extreme behaviorgCription data from TRUS, DRE and needle biopsy are
that a volume-grade model cannot foresee well. Indeed, othér eded. 'Since all data are :alffected by large errors, sophisti-

factors besudes volume and grad'e,'e.g., geneyc ones, shouC ted statistical procedures are necessary to produce the best
be considered for a correct prediction. In particular, aggres-

sive tumors with a high degree of mutation to PD cells and initial condi'gions, anf_;llogous to those tha_lt int_egrate data from

high probability of metastasis seem to depend on familiar o ound stations, radpsondt_a; gnq satellites in meteorology to
. ) . . . generate the analysis that initialize modg3].

racial predispositiori1,4] and on environmental conditions.

To carefully describe such influence, specifically for an indi-

vidual patient or for group of patients belonging to a specific ACKNOWLEDGMENTS

class or living in a particular environment, a more accurate
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