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Models, based on bio-physical and biological considerations, may be very helpful as support tools for
traditional diagnostic methodologies and interpretation of statistical data in oncology. This is particularly true
when the neoplastic progression and differentiation are rather simple and regular, such as in the case of
prostatic adenocarcinomas. Using clinical data as a “statistical ensemble,” we propose here a Markovian model
to forecast the tumor progression. After validation with clinical data, the model is applied to the determination
of the temporal evolution of the risk of metastasis.
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I. INTRODUCTION

Prostatic adenocarcinoma, like many other cancers, is
characterized in its temporal evolution by volume growth
and loss of differentiation[1]. Volume and histologic differ-
entiation(both of a single cell and of the whole tumor) can
be quantified in terms of grading systems[2]. Therefore, the
pair volume-grade constitutes the most widely used and sig-
nificant prognostic variable, also because they allow one to
predict the presence of metastasis better than any other mor-
phologic or clinical features[3].

Indeed, given the tumor volume and grade, the prediction
of its evolution and risk of metastasis is a crucial question,
particularly for the case of prostate cancers, which are very
frequent in elderly men(more than 30% among men over 50,
with a sharp increase with age[4–6]), but very slow in their
progression. As a result, there are many more men dying for
other reasons, but with a prostate cancer which is often still
clinically insignificant, than men that die of prostate cancer
[5,6]. Therefore, there is a wide debate about the usefulness
of aggressive treatments(surgery, radiation therapy, hor-
monal therapy), which often cause incontinence and impo-
tence, for tumors that, in most cases, would not threaten the
life and health of the patient in his remaining lifetime[4–6].
Even though different studies suggest the strategy of “watch-
ful waiting,” giving the patient the appropriate treatment
only if and when the tumor is really dangerous[7–10], the
decision of optimal scheduling of the screening procedure
after detection is still an open question[6].

To help in this kind of decisions mathematical models,
based on bio-physical, chemical and biological consider-
ations, may be valuable tools to support and complement
traditional diagnostic approaches. Indeed, in the last decades,
several models have been proposed to describe the dynamics
of tumors[11–16] and angiogenesis[17–19]. Despite the sig-
nificant conclusions and the validation through comparison
with experimental data, two major drawbacks affect most of
these models: the large number of parameters(often difficult

to evaluate) and the lack of “in vivo”/clinical data represent-
ing a temporal evolution of the neoplasm.

The case of prostatic adenocarcinoma allows one to partly
avoid such difficulties. In fact, as mentioned before, volume
and grade are the natural choice for the construction of math-
ematical models, in which few parameters are required,
thanks to the simplicity and regularity of prostate cancers
progression. Also, since prostate adenocarcinomas are very
diffused and often detected only after the patient’s death, a
large amount of data about untreated tumors is available.
Even though they do not strictly constitute a temporal se-
quence, they may be used as a statistical “ensemble,” which
may provide a somewhat equivalent information as a time
series.

The most suitable mathematical approach to couple the
temporal evolution with the statistical ensemble is to treat
growth and histologic progression of the tumor as a “Mar-
kovian process,” in which the many elements, which influ-
ence the dynamics, are accounted for through a stochastic
approach[20,21], as discussed in Sec. II. In Sec. III, we
estimate the values of the parameters of our model by com-
parison with autopsy data[1,4]: death can be considered as a
particular random sampling of the growth process, and the
probabilistic distribution in terms of volume and grade from
autopsies can be compared with that generated by a series of
simulations. In Sec. IV we consider the risk of metastasis, by
introducing the probability of metastasis per year. The prob-
ability that a tumor of given mass and grade has already
produced metastasis is calculated and compared with experi-
mental data from radical prostatectomies and successive
follow-ups [3]. Finally, in Sec. V, we apply our model to the
prediction of the temporal evolution and risk of metastasis
for a tumor of given initial volume and grade(both affected
by uncertainty).

II. THE MODEL

A. Biological considerations

For prostatic adenocarcinomas, the more widely used
grading system in clinical applications is that of Gleason
[2,6,22,23]. In such a scheme, cancer cells are divided into
five categories, starting from the better differentiated(Glea-
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son grade 1) to the worst differentiated(Gleason grade 5).
However, in the literature, cells are sometimes grouped in
only three categories: well differentiated(Gleason grades 1
and 2), moderately differentiated(Gleason grade 3) and
poorly differentiated(Gleason grades 4 and 5) [4,6,8]. The
whole tumor is then classified on the basis of the prevailing
grade.

In our model we consider only two kinds of cells: well-
moderately differentiatedsWMDd cells, corresponding to
Gleason grades 1–3, and poorly differentiatedsPDd cells,
Gleason grades 4 and 5. The grade of the tumor is then
measured by a continuous variable, given by the percentage
of the whole mass that is poorly differentiated. Beside the
obvious simplification from a mathematical and computa-
tional point of view, our assumption is justified for several
reasons. First of all, the available experimental data of
volume-grade distributions[1] are too sparse for a compari-
son with more than two grade classes. Indeed up to now only
models with a single kind of cell have been adopted. McNeal
[24] and Schmidet al. [25] consider an exponential growth
for the whole tumor, while Fuckset al. [26] consider a
Gompertzian one. However, considering a single type of cell
seems to be insufficient to grasp the complexity of the
growth mechanisms, as shown by Stameyet al. [3]. In par-
ticular, they demonstrate that the percentage of poorly differ-
entiated cells in tumors from radical prostatectomies is more
predictive of the risk of metastasis than the traditional Glea-
son score.

Furthermore, we distinguish between a Gompertzian and
an exponential growth laws for WMD and PD cells, respec-
tively. Such choice is dictated by experimental evidence
about the growth rates. Schmidet al. [25] suggest an expo-
nential growth with median doubling time of about 70
months for organ confined tumors without any evidence of
Gompertzian slowing and a decrease to 43 months for tu-
mors in advanced stages(not organ confined). Nevertheless,
they consider only clinically detectable tumors, of at least
0.2 cm3. The same growth rate cannot apply to microscopic
tumors. In fact about 30 doublings are needed to reach a size
of 1 cm3 from a single cell: with a 70 months doubling time,
this would be equivalent to about 140 years! Therefore we
believe that microscopic tumors formed by well-
differentiated cells grow much faster in the initial stages.
Eventually, later the growth process slows down because
WMD cells are incapable of angiogenesis and only the ap-
pearance of PD cells, probably more resistant to apoptosis,
determines an increase of the growth constant in more ad-
vanced tumors.

B. Mathematical description

To implement our model, we discretize time with a stept.
At each time step, the tumor is described by two variables:
the volumev0 of WMD cells andv1 of PD cells. We call
V=v0+v1 the total volume. As in[3], we define the grade of
differentiationG of the tumor:

G = v1/V. s1d

If G,0.5, the tumor is considered WMD, otherwise PD.

As mentioned before, WMD cells proliferate following a
Gompertzian-like dynamics(see also[27] where a universal
Gompertzian-like dynamics is postulated for all tumors in
early stages). Hencev0 grows according to

v̇0 =
v0st + td − v0std

t
= G0f1 − exps− Vc/Vdgv0std, s2d

whereG0s.0d is the growth rate andVc is a critical volume
at which the slowing of the growth starts becoming evident,
due to limitation in nutrient availability[11] and/or cells de-
formation[28]. The volume of PD cells grows exponentially
with growth constantG1:

v̇1 =
v1st + td − v1std

t
= G1v1std. s3d

Finally, the de-differentiation process is described as fol-
lows. At each time step, the volumev0 is divided inN iden-
tical volume units(labeled asv0i), each of 0.1 cm3, with the
rest discarded. Each volume unit can transform tov1 with
probability pt. Hence,

v0 → v0 − o
i=1

N

v0ir i ,

s4d

v1 → v1 + o
i=1

N

v0ir i ,

wherer i are random numbers which assume the values 1(or
0) with probability pt (or 1−pt).

The averaged(deterministic) treatment of the stochastic
growth processes, resulting in Eqs.(1) and(2), is justified by
the huge number of cells constituting the tumor mass(of the
order of 109 per cm3). On the contrary, the slowness of pros-
tate cancer progression suggests that only a small subset of
mutations produce de-differentiation, while most of them
generate clones not competitive with or with similar growth
characteristics of nonmutated cells.(Note that the WMD
phase includes a very heterogeneous set of cells, which
might have very different properties but follow the same
growth law.) As a consequence, even if the time and volume
scales used here(about 1 year and 0.01 cm3) suggest that
mutations occur with a high frequency, the de-differentiation
process remains a rare phenomenon. As a consequence, the
explicit introduction of a random term is not avoidable.

C. Implementation

The model proposed in the previous subsection is imple-
mented as follows:

(1) A population ofM different “virtual” patients is con-
sidered. At any timet during the evolution, each casei si
=1, . . . ,Md is defined by a vector formed by volume, grade
and agea of the patient:

wW i,t = hVistd,Gistd,aistdj. s5d

Of courseaistd=ais0d+ t, whereais0d is the initial age of the
patient.
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(2) The initial distribution of patientswW i,0 is determined
from autopsy data.

(3) Each case is allowed to evolve up to an ageai =Te,
i.e., for a number of time stepsTi =fTe−ais0dg /t.

(4) The full set of vectors is then sampled into intervals
of width DV,DG,Da to obtain the probability density func-
tion to detect a tumor with volume betweenV and V+DV,
grade betweenG andG+DG in a patient with age betweena
and a+Da. Since, for validation, we consider autopsy data,
each vector is weighted by a functionhsaistdd, which ac-
counts for the rate of death at ageaistd.

In the present implementation, the growth parameters
sG0,Vc,G1,ptd are assumed to be the same for each ensemble
member (virtual patient). A better description should of
course take into account that the mutation probability which
causes de-differentiation depends on genetic predisposition
and on the local environment, different from individual to
individual. Hence, it might be reasonable to use a distribu-
tion of transformation rates(i.e., pt=pti

) and characterize the
transition probability by the resulting average value and vari-
ance. Nevertheless, as we will show later, the details of the
distribution do not substantially influence the ensemble av-
erages, remaining crucial only for what concerns the particu-
lar evolution of each individual member of the ensemble.

III. COMPARISON WITH EXPERIMENTAL DATA

To apply the proposed approach, we discretize time with a
one year step, small enough to appreciate some details of the
dynamics, which develops over 40-50 years, but long enough
to allow us to neglect features over a short time scale(like
cellular events). Also, we considerM =10 000 andTe=100
years. The latter is large enough so thath(astd.Te),0.

We start our simulations with tumors composed of WMD
cells fGis0d=0g and volumeVis0d=10−3 cm3s∀id. Vis0d is
the lowest detectable size of a tumor in autopsy or from a
surgical specimen[5,29]. Considering smaller tumors, al-
though desirable, is not meaningful due to the lack of data
for estimating the distribution of tumor occurrence with age.

In order to reproduce as well as possible the experimental
distribution for the tumor occurrence age, we consider the
distribution of prostate tumors and life tables for the year
2000 in the United States[30]. In Fig. 1, we report the fre-
quency of prostate cancer in every decade of life over 40
derived from a metanalisis of eight series of autopsies[4].
An exponential fit of the formcsad=K expsa/ad with K
=2.37 anda=28.5 years, gives the percent of prostate cancer
affected people at agea. Although the adopted exponential
fit constitutes a somewhat arbitrary extrapolation of cancer
occurrence at both young and old ages, we believe that ne-
glecting in the simulations cancer occurrences ata,40 will
cause an error larger than the one introduced by a possibly
poor extrapolation of thecsad curve.

The time derivative defines the fraction of men of agea
that get a new cancer. Iflsad is the survival probability at age
a (taken from [30]), the probability that a prostate tumor
starts at agea is (see Table I)

fsad =

dcsad
da

lsad

oa

dcsad
da

lsad
. s6d

[Note that the rate of death at the age a ishsad=
−fdNsad /dag=−fdlsad /dagNsa=0d. In fact, Nsad= lsad ·Nsa
=0d is the number of living members at agea.]

The initial distribution of agesais0d has been selected
from 25 to 99 years, reproducing the distribution described
by fsad.

Once the system is let to evolve, the set ofN=oi Ti vec-
tors yields the distribution(volume, grade and age) of detect-
able tumors. Integrating over age, we obtain data comparable
with the experimental frequencies(FsV,Gdexp) obtained from
100 autopsies[1] which are reported in Table II. Experimen-
tal data have been rearranged to consider only two grade
classes, WMD and PD, as explained in Sec. II.

To obtain the frequencies for the simulated data, we
sample the volume into the same five classes as in the statis-
tical analysis of the experimental data. The optimal model
parameters have been selected in order to minimize the

FIG. 1. Frequency of prostate adenocarcinomas in adult males
derived from autopsy data[4]. For each decade, we report the per-
cent of cases with a tumor. The solid line represents an exponential
fitting.

TABLE I. Survival probability, new cancers fraction, and cancer
occurrence distribution as a function of age.lsad is taken from[30],
dcsad /da is derived from the exponential fit of Fig. 1 andfsad from
Eq. (6).

Age Survival New cancers fsad
(a) probability (%) lsad (%/year) dcsad/da s10−2d

25 97.7 0.20 0.63

35 96.3 0.28 0.88

45 93.8 0.40 1.22

55 88.7 0.57 1.63

65 77.9 0.81 2.03

75 57.3 1.15 2.13

85 27.3 1.64 1.44

95 4.3 2.32 0.32
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square distance between the simulated and experimental fre-
quency distributions, considering a Poissonian error for each
value of the simulated frequency greater than 5 and an error
equal toÎ5 otherwise. We found a minimum for the values
of the parameters shown in Table III. Note thatG1=0.16
corresponds to a doubling time of about 56 months, in good
agreement with the average of the experimental observations
for organ-confined and non-organ-confined tumors(43 and
69 months, respectively) [25].

In Table II we report also the comparison between experi-
mental data and the simulation results. We can observe that
the general agreement is satisfactory, confirming that the
simple model adopted is sufficient to reproduce enough in-
formation about the dynamics of the system. Some discrep-
ancies may be found for big WMD tumors(with
V.1.4 cm3) and small PD tumors(with V,1.7 cm3). How-
ever, it should be noted the poor statistics(few experimental
cases) for such conditions, which indeed correspond to the
extreme behaviors of “less harmful tumors that grow in size
without histologic progression” and “very aggressive tumors
that turn very soon to poorly differentiated patterns.” The
results reported in parentheses refer to simulations in which
the de-differentiation probability is assumed to be patient
(marked with the indexi) dependent to simulate different
environmental conditions for different ensemble members
[pti

=pts0.8+0.2xd wherex is a random number with uniform
distribution between 0 and 1]. As expected, they are very
close to the ones obtained with a fixed rate equal for all
individuals (results not in brackets).

As already mentioned previously, the extension of the ex-
ponential extrapolation of the frequency of prostate cancers
to ages below 40 is somewhat arbitrary(see Fig. 1 and rela-
tive discussion), but unavoidable, due to the lack of clinical
data. To prove that our results are not too sensitive to the

choice adopted, we have simulated the ensemble behavior
assuming that no cancer starts at ages below 35[i.e., we
impose a cut-off by neglecting in the sampling process the
contributions from patients withas0d,35]. We obtain re-
sults (see Table IV) in good agreement with the ones re-
ported in Table II, hence justifying our extrapolation. The
lower percentages of large volume tumors found when the
cut-off is applied are reasonable, considering the shorter(on
average) duration of the simulated neoplasm evolution.

To demonstrate the need of a two-populations model, we
have also tried to reproduce the experimental data with a
single population model. In Table V, we report a comparison
between the marginal frequenciesfmsVd of the experiment
and of the two-species simulation previously described(ge-
sim). Marginal frequencies are defined in terms of volume,
i.e., summing the results of Table II for each volume over the
grade: fmsVd= fWMDsVd+ fPDsVd. We compare the results
with that obtained when optimization has been performed
considering a single cell species: either PD cells(e-sim),
following an exponential growth(G1=1.3, best choice in
terms of square distance), or WMD cells (g-sim), with
Gompertzian growth(Vc=0.5, G0=5.9, best choice in terms
of square distance). The results show that ge-sim fits much
better real data than both e-sim and g-sim(Poissonian error
3.9 against 31.5 and 10.2) and we can conclude that a single
species model is not adequate to describe prostate cancer
growth.

IV. PREDICTION OF METASTASIS

As a further step, we address the problem of metastasis
generation. We assume that the probability of metastasis per

TABLE II. Frequencies of detection of a tumor with given grade
and volume. Comparison between simulation and experimental re-
sults. In parentheses, we report the results obtained by using a pa-
tient dependent transition probability with random uniform distri-
bution aroundpt.

V scm3d

WMD PD

exp sim exp sim

V,0.05 19 19.3(19.2) 1 0.0 (0.0)

0.05,V,0.17 18 18.6(18.6) 2 0.5 (0.5)

0.17,V,0.46 18 23.6(23.9) 2 2.2 (2.4)

0.46,V,1.40 13 14.4(15.3) 7 7.3 (7.4)

V.1.40 7 0.2(0.2) 13 13.9(13.5)

TABLE III. Optimal parameters for the simulation as obtained
by minimizing the square distance between simulated and experi-
mental distributions as reported in Table II.

G0 Vc G1 pt pm

1.3 0.018 0.16 0.018 0.022

TABLE IV. Frequencies of detection of a tumor with given
grade and volume. Simulation results obtained with a cut-off of
cancer occurrence at age 35. In parentheses, we report for reference
the simulation results already reported in Table II.

V scm3d WMD PD

V,0.05 19.8(19.3) 0.0 (0.0)

0.05,V,0.17 18.9(18.6) 0.6 (0.5)

0.17,V,0.46 24.1(23.6) 2.3 (2.2)

0.46,V,1.40 14.8(14.4) 7.2 (7.3)

V.1.40 0.1(0.2) 12.2 (13.9)

TABLE V. Marginal frequencies of detection of cancer with a
given volume. Comparison between experimental data and simula-
tions with two (ge-sim) and one(e-sim, g-sim) species.

cm3 % exp % ge-sim % e-sim % g-sim

V,0.05 20 19.3 35.8 18.9

0.05,V,0.17 20 19.1 16.1 12.9

0.17,V,0.46 20 25.8 7.6 16.2

0.46,V,1.40 20 21.7 14.4 33.3

V.1.40 20 14.1 26 18.8

R. PEIROLO AND M. SCALERANDI PHYSICAL REVIEW E70, 011902(2004)

011902-4



time steppmet is a monotonically increasing function of the
volume of PD cells. This choice is in agreement with data
reported by Stameyet al. [3], where a strong relation be-
tween the percentage of PD cells and the presence of me-
tastasis is shown.

The functionpmetsv1d is obtained from the total probabil-
ity law. In fact, the probability that a tumor generates the first
metastasis while growing from volumev1 to v1+dv1 is given
by

pmetsv1 + dv1d = pmetsv1d + pmetsdv1d − pmetsv1dpmetsdv1d.

s7d

Considering thatdv1 is a small volume, we introduce the
linear approximationpmetsdv1d=pmdv1 to obtain

pmetsv1d = 1 − exps− pmv1d. s8d

Using Eq.(8), the probability of metastasis is calculated
as follows:

(1) At each time stept of a simulation a random number
r P f0;1g is generated.

(2) If r ,pmetsv1stdd, from that time on there are meta-
stasis.

(3) Summing over many simulations we get the probabil-
ity that a tumor of total volumeV has already produced
metastasis.

The ideal data for a comparison come in this case from
radical prostatectomies and successive follow-ups. In fact in
many cases microscopic, undetectable and clinically insig-
nificant metastasis may be present and only in the following
years their presence becomes evident.

Experimental frequencies are given in Table VI for four
volume intervals[3]. (Note that volumes are much larger
here than in previous cases, since we consider experimental
data for tumor patients, i.e., in more advanced stages.) We
derived the value ofpm (reported in Table III) that minimize
the square distance between the simulation and experimental
data(see Table VI). Our results are in good agreement with
observations, except for the underestimation in the case
V,2 cm3, probably due to neglecting, in our model metasta-
sis due to WMD cells, which are predominant in small tu-
mors. Experiment confirms that even WMD cells(albeit with
very low probability) may produce metastasis.

V. APPLICATIONS

A. Results

The values in Table III represent the best choice for the
parameters of our model, i.e. those that optimize the growth

prediction in terms of volume, differentiation and metastasis
generation. Given such values and the vector of the initial
values(grading, volume and patient age), the evolution of a
single tumor can be followed up and its temporal evolution
represented both as a traditional time sequence and as a tra-
jectory in thesV−Gd Cartesian plane, i.e., neglecting from
now on the age variable. Furthermore, at each point of the
trajectory, the probability of metastasis can be estimated us-
ing Eq. (8).

In Fig. 2, we represent the temporal evolution of four
selected cases(from now on called realizations), each start-
ing from the same initial condition:V=0.1 cm3 andG=0. As
visible from the upper and middle plots(in which the vol-
umes of WMD and PD cells are represented), only slight
differences are present. In fact, after an initial phase of pro-
liferation of WMD cells, later de-differentiation becomes
dominant and, at long times, well differentiated neoplastic
cells reach an asymptotic volume. It is to be noted that, e.g.,
at 20 years, the total tumor volumes(V) for the four cases are
0.6, 0.8, 1.18 and 1.20 cm3, which might be a significant
difference from a clinical point of view. Also, the cases differ
for the time of metastasis occurrence:t=15, 12, 18 and 22
years, respectively.

In the lower plot, the same data are represented in a
volume-grade Cartesian plot. Here, differences among the
realizations are hardly visible.

Data as the ones reported in Fig. 2 are significant only for
understanding qualitatively the behavior of the system. A

TABLE VI. Probability that a tumor of a given volume has
produced metastasis.

cm3 % met exp % met sim

0.5,V,2 14% 6%

2,V,6 39% 37%

6,V,12 67% 71%

V.12 97% 93%

FIG. 2. Temporal evolution of the volumes of WMD and PD
cells for four different realizations obtained from the same initial
condition and representation of the corresponding trajectories in the
volume-grade Cartesian plane.
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different form of analysis, however, allows us to use the
model as a diagnostic tool. In fact, for a given starting point
fVs0d ,Gs0dg, a series ofM simulations can be performed,
each producing a different path in theV−G plane. At a fixed
time t, the M points sVistd ,Gistdd, whereis=1, . . . ,Md is the
trajectory label, form a “cloud” of values, representing a
probabilistic forecast ofV and G. Also, each temporal evo-
lution may have metastasis from a certain time on. So, sum-
ming over all the simulations, we can get the probability of
metastasist years after the initial diagnosis of the tumor.

In Fig. 3, as a typical example, we report snapshots of the
distribution in theV−G plane at 5, 10, 15, 20 and 25 years,
for M =1000 simulations. The initial conditions are the same
as the ones used in Fig. 2. As expected, the tumor evolves
very slowly. The cloud remains initially quite well localized,
denoting the low influence of de-differentiation. Later, 10
years, while the volume remains quite predictable, this is no
longer true for the tumor grade. Then, the dispersion for the
volume becomes bigger(ranging between 0.6 and almost
2 cm3 at t=20 years). Finally, as soon as the volume turns to
be big, generally tumors appear to be poorly differentiated
(good predictions for the tumor grade, but low confidence on
the tumor volume). It should, however, be noted that the
predictability remains good during all stages of the evolu-
tion.

As already remarked, such analysis also allows us to
evaluate the temporal evolution of the probability of metasta-
sis, as reported in the lower-right plot of Fig. 3. As expected,
pmet increases exponentially with time, together with the ex-
ponential increase of the volume of PD cells(see also Fig.
2).

A more careful analysis, however, requires one to con-
sider that initial conditions are always known with a degree
of uncertainty. In fact, except with radical prostatectomy
(which of course stops the temporal evolution), tumor vol-

ume and differentiation can be guessed only through indirect
and imprecise measurements: blood test of prostate-specific
antigen(PSA), transrectal ultrasound(TRUS), digital rectal
examination(DRE), needle biopsy, etc.[4,6]. So, even the
starting conditions are represented not by a single value but
by a probabilistic cloud of valuessVis0d ,Gis0dd, as done in
meteorology with the ensemble prediction system(EPS)
[31,32], and the temporal evolution causes a further widen-
ing of the cloud.

We propose here three virtual experiments starting from
the following initial conditions:

(1) T1: a tumor clinically detectable, still small and
WMD: V=0.5 cm3, G=0.25;

(2) T2: an intermediate tumor:V=1.5 cm3, G=0.5;
(3) T3: a big tumor already PD at the diagnosis:V

=4.5 cm3, G=0.75.
For each of them, we consider a normal distribution of

initial values with standard deviation of 0.1 onG and of 0.1
on the logarithm ofV. In Fig. 4, we plot the distribution at
t=0, 5, 10 and 15 years in aV−G plane for the three cases.
Except in the case of early diagnosed tumors(small WMD
tumors), the probabilistic cloud becomes less spread with
increasing time, particularly for what concerns grade, with
spreading along theG-axes following a trend comparable to
the ones obtained assuming no error in the initial diagnosis
(see for comparison Fig. 3). On the contrary, the error in the
volume determination seems to affect strongly the predic-
tions. In fact, the indetermination on the logarithm ofV re-
mains almost constant when increasing time, with a notice-
able indetermination of the tumor volume.

Sensibly different is the case of an early detected tumor
(first column). Here, the uncertainty on the initial conditions
make the time evolution rather unpredictable. In particular
no estimate can be provided about the grade at 5 and 10
years, with obvious consequences on the reliability of the
estimate of the metastasis probability.

FIG. 3. Forecast of the evolution of a tumor with initial condition:V=0.1 cm3 andG=0. Representation of the distribution of volume and
grade at 5, 10, 15, 20 and 25 years after initiation(for M =1000 realizations) and temporal evolution of the metastasis probability.
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In fact, the same set of data allows us to estimate the
probability of metastasis at 5, 10 and 15 years for the three
cases considered. Results are reported in Table VII. As we
can see,pmet is negligible for a T1 tumor at 5 years and still
small at 10 years. Even for a T2 tumorpmet is low at 5 years
and moderate at 10 years, so for the oldest patients surgery or
radiation therapy may not be advisable. Our results are in
satisfactory agreement with clinical data(reported in paren-
theses in Table VII), taken from[8,33], even though the cor-
relation between the model initial condition and the experi-
mental diagnosis of the selected cases is rather rough due to
the limited information about the experimental data. Also, as
already mentioned, our model underestimates slightly the
metastasis probability for small WMD tumors, since it does
not account for metastatization of WMD cells.

B. Discussion

In 1951 Franks[34] discovered that many elderly men,
who had died from different illnesses, had in their prostate a
small adenocarcinoma. Since the number of men dying of

prostate cancer was much smaller, he concluded that there
must be a large group of latent cancers biologically incapable
of progression and only a small group of aggressive, harmful
prostate cancers. He also proposed that, since it is not pos-
sible to distinguish between them, prostate cancer evolution
is highly unpredictable. This theory has now been abandoned
and there is a wide consensus about a single kind of prostate
cancer, whose frequency of inception increases with age and
whose growth is very slow in comparison with other tumors
[5,25]. As a result, Stamey[35] suggests that prostate cancer
is highly predictable. His statement, however, fails to justify
the sometimes unexpected outcome of tumor evolution.

Figures 2 and 3 seem to support Stamey’s thesis. In fact
the tumor dynamics seems to be only slightly stochastic(Fig.
2) and the expected size and grade of the tumor at any given
time quite predictable(Fig. 3). Nevertheless, Fig. 4 suggests
that the uncertainty in the initial conditions might render
predictions less reliable, especially in the case of early diag-
nosed tumors. In fact, prognosis is often synthesized by a
single parameter: the risk of metastasis as a function of time,
which can be compared with patient’s life expectancy and
other clinical data and help in the decision of the appropriate
treatment. Such parameter is indeed very dependent on the
tumor grade, hence on the quality of the initial conditions.

VI. CONCLUSIONS

In this work, we have proposed a Markovian model to
predict volumetric growth and histologic progression in pros-
tate cancers. The model predictions have been validated with
a statistical analysis of the relation between initial diagnosis

FIG. 4. Effects of the uncer-
tainty on the initial conditions on
the forecast of the evolution for
three different initial conditions as
reported in the text. Representa-
tion of the distribution of volume
and grade at 5, 10 and 15 years
after initiation.

TABLE VII. Metastasis probability at 5, 10 and 15 years for the
three cases considered in Fig. 4. Data in parentheses refer to clinical
data with roughly similar initial conditions.

5 years 10 years 15 years

T1 3%s7%d 8%s19%d 19%

T2 13%s16%d 35%s42%d 65%

T3 45%s49%d 83%s74%d 98%
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and final outcome over a group of patients. This approach
makes it possible to exploit different sets of data, optimizing
the parameters in comparison with them. Here we used au-
topsy data, considered as a random sampling of the tumor
development process, and clinical data about metastasis from
radical prostatectomies and follow-up. Temporal evolution of
the tumor is represented by a path in the volume-grade plane,
the two most significant diagnostic and prognostic variables.
Owing to uncertainties both in the initial conditions and in
the further evolution, the path is enlarged to a cloud moving
with time toward the upper right corner of the plane.

The general agreement of our model with autopsy and
clinical data is good, although there are extreme behaviors
that a volume-grade model cannot foresee well. Indeed, other
factors besides volume and grade, e.g., genetic ones, should
be considered for a correct prediction. In particular, aggres-
sive tumors with a high degree of mutation to PD cells and a
high probability of metastasis seem to depend on familiar or
racial predisposition[1,4] and on environmental conditions.
To carefully describe such influence, specifically for an indi-
vidual patient or for group of patients belonging to a specific
class or living in a particular environment, a more accurate
analysis of the influence of a random distribution of the pa-
rameters (in particular the mutation probability) among
members is essential.

We plan to integrate our model with other sets of data
such as temporal series of PSA values in untreated patients
and information about genetic predisposition. A further step
would be to consider not just the total volume but also the
growth pattern and directionality(where it starts, whether it
penetrates through the capsule, if it reaches the seminal
vesicles, etc.). Different tissues have different rigidity and
vascularization, leading to different prognosis of further
growth and metastasis[3,2]. This can well be reproduced
with a local interaction simulation approach(LISA) [36], in
which also space is discretized and local mechanisms may be
directly included in the model[11,13]. For this kind of de-
scription, data from TRUS, DRE and needle biopsy are
needed. Since all data are affected by large errors, sophisti-
cated statistical procedures are necessary to produce the best
initial conditions, analogous to those that integrate data from
ground stations, radiosondes and satellites in meteorology to
generate the analysis that initialize models[37].
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